2013

Yoojin Chung, Ph.D.

Yoojin Chung, Ph.D.

Massachusetts Eye and Ear Infirmary
Restoring binaural hearing with cochlear implants in early-onset deafness

Many profoundly deaf people wearing cochlear implants still face challenges in everyday situations such as understanding conversations in crowds. This is because, even with cochlear implants in both ears, they have difficulty making full use of subtle differences in the sounds reaching two ears to identify where the sound is coming from. This problem is especially acute in children with congenital deafness. We will study how perceptual training can help the brain to develop the circuitry for processing this precise information in animals with early-onset deafness. Results from the study will eventually lead to new sound processors and rehabilitation strategies specifically adapted for bilateral cochlear implants.

Research area: neural coding of cochlear implant stimulation, central auditory plasticity

Long-term goal of research: To improve treatments for children with early-onset deafness by studying how neural mechanisms for binaural processing are altered by auditory deprivation during development and whether these effects can be reversed by CI stimulation.

Brenton Cooper, Ph.D.

Brenton Cooper, Ph.D.

Texas Christian University
Lateralization of acoustic perception in Bengalese finches

Cooper’s research aims to further our understanding of how different sides of the brain are specialized for processing different frequencies of sounds. Auditory processing of speech and language is lateralized to the left hemisphere of the human brain. Cooper’s specific aims are to determine whether auditory processing in the Bengalese finch is lateralized to specific sides of the brain, as in humans, and to determine whether the lateralization is learned or genetically determined.

Research area: Central Auditory Processing Disorder

Long-term goal of research: To develop this animal model for testing and refining treatments for hearing loss and lateralized frequency processing deficits in humans, including CAPD.

Scott Cronin, M.D.

Scott Cronin, M.D.

University of Michigan
Ototoxicity of a common drug delivery tool and FDA Orphan Drug, 2-hydroxypropyl-beta-cyclodextrin

Cyclodextrins are a class of molecules that can dissolve cholesterol and other lipids in the body. They are commonly found in household cleaning products, and they are being studied in the treatment of Niemann-Pick disease. Unfortunately, cyclodextrins cause hearing loss and damage to the cochlea at high doses. This project will study the effects of 2-hydroxypropyl-betacyclodextrin (HPBCD) on hearing in a mouse model by injecting this drug under the skin and into the brain. This research will quantify the level of hearing loss and cochlear damage caused by this medication. In addition, the mechanisms of hearing loss and ototoxicity through a variety of techniques will be studied. This novel approach to studying HPBCD may have powerful impacts for patients with Niemann-Pick disease as well as advance our understanding of drug related ototoxicity.

Research area: Hearing loss; Ototoxicity

Long term goal of research: To develop novel tools for both the prevention and treatment of hearing loss. Cyclodextrins are powerful drugs that can be used to deliver a variety of drugs into the eye, brain, and even the ear. They can also be used to treat lysosomal storage disorders such as Niemann-Pick disease. Unfortunately, at high doses they cause hearing loss and damage the cochlea. The long-term objective is to understand the mechanisms of cyclodextrin induced hearing loss. Hopefully this will lead to novel strategies to ameliorate cyclodextrin damage while retaining its drug-delivery and therapeutic advantages. In addition, new therapeutic uses for HPBCD to treat inner ear disorders will be developed.

Brian R. Earl, Ph.D., CCCA, FAAA

Brian R. Earl, Ph.D., CCCA, FAAA

University of Cincinnati
Specifying the Integrity of Neurons in the Auditory Periphery (SiNAP)

Auditory nerve degeneration is thought to lead to difficulties with understanding speech, especially in noisy listening situations. Diagnosis of auditory nerve degeneration, however, may be missed by common hearing tests. This research examines the utility of a new technique to specify the extent and region of auditory nerve damage within the inner ear. Application of the technique in a clinical setting may help individualize hearing aids and cochlear implants, and in the future, guide delivery of therapeutic agents that can truly restore hearing to individuals with hearing loss.

Research area: Auditory physiology; Diagnostic audiology

Long-term goal of research: To develop tools for diagnosis of auditory nerve integrity that will improve the individualization of treatment options for individuals with hearing loss.

Israt Jahan, M.B.B.S., PH.D.

Israt Jahan, M.B.B.S., PH.D.

University of Iowa
Misexpression of Neurog1 combined with delayed deletion of Atoh1 provides a novel model

Contemporary research is focusing on the regeneration of hair cells in hearing loss using Atoh1. Reconstitution of the organ of Corti requires proper organization of the two types of hair cells, inner and outer hair cells, as well as supporting cells. Recent data showed that level of Atoh1 determines the degree of survival of different types of hair cells. Jahan’s previous work demonstrated the survival of some organ of Corti-like cells without Atoh1 if replaced by a closely related transcription factor, Neurog1. It is now Jahan’s intent to investigate the effect of Atoh1 substitution with Neurog1 combined with a delayed loss of Atoh1 expression in viable animals. This combined mutant offers for the first time a critical test of presumed causalities of molecular mechanism that may regulate the patterning of the organ of Corti, including hair cell and supporting cell differentiation.

Research area: Hair Cell Regeneration

Long-term goal of research: To define the correct dose and duration of Atoh1 expression for type-specific hair cell development which will provide novel insights into hair cell regeneration.

Alan Kan, Ph.D.

Alan Kan, Ph.D.

University of Wisconsin, Madison
Exploiting the “better ear” in bilateral cochlear implants for improved speech understanding in noisy situations

A recent study investigating selective attention abilities in cochlear implant users may point to a novel new method for improving the understanding of speech in a noisy environment. In that study, cochlear implant users showed significant improvement in speech understanding when instructed to attend to a target talker in one ear and ignore an interfering talker in the other. For some, there was a “better ear” for listening which yielded an even greater improvement. The aim of this work is to evaluate the feasibility of a novel strategy that takes advantage of these observations. A “better ear” strategy is proposed that combines (1) attending to a target talker in the “better ear” with (2) processing that separates the target talker’s speech from a noisy background, and delivers the target talker to the “better ear” and the remaining sound scene to the other ear. We believe this “better ear” strategy will be a significant step towards closing the gap in speech understanding performance between bilateral cochlear implant users and normal hearing listeners, and has the potential to provide significant improvements in speech understanding in noisy situations for patients with bilateral hearing aids, bimodal aids and other types of hearing impairments. Notably, this work is particularly important and relevant for children fitted with cochlear implants since they need to contend with noisy environments, such as classrooms, every day. The ability to hear better in these environments will lead to improved long-term social and educational development for these children.

Research area: Cochlear Implants; Central Auditory Processing Disorder

Long-term goal of research: To close the gap in speech understanding performance between cochlear implant users and normal hearing listeners. The primary outcome of this study will help determine whether the “better ear” strategy will provide a significant benefit for cochlear implant users, and whether this strategy for listening is desirable. Positive results will provide an impetus for the development of new engineering solutions surrounding the implementation of this “better ear” strategy. In addition, our proposed experimental paradigm offers a unique opportunity to study auditory attention mechanisms used in understanding speech in noisy environments. This will help further develop our understanding of the human auditory system so that we can bridge the gap in hearing-in-noise performance between hearing impaired and normal hearing listeners.

Ravinder Kaur, Ph.D.

Ravinder Kaur, Ph.D.

Rochester General Hospital Research Institute
Differential Virulence gene expression of S. pneumoniae and Haemophilus influenzae in children with Acute Otitis Media & modulation of innate immune responses

Middle ear infections are the most common infectious disease among children leading to the use of antibiotics. Middle ear infections are typically followed by 4-12 weeks of middle ear effusion during which time children have diminished hearing leading to temporary delayed speech and language development. In developing countries, permanent hearing loss is not uncommon. Non-typeable Haemophilus influenzae (NTHi) and Streptococcus pneumoniae (Spn) are the two main bacteria that cause middle ear infections and are the target for new vaccine development. In the funded research, expression of various vaccine candidate proteins of NTHi and Spn in the nose (where middle ear infections start) and in the middle ear (where infections cause hearing loss) will be compared. Gene expression of the studied NTHi and Spn vaccine targets might be modulated by innate immunity of the host during disease progression and this too will be studied.

Research area: Middle Ear

Long-term goal of research: To develop a vaccine to prevent middle ear infections, thereby reducing hearing loss from this common childhood infection. Towards this goal here we will evaluate several vaccine candidates of the most common causes of middle ear infections to determine whether immunity induced by vaccination will be effective to rid the child of the bacteria when they reside in the nose and/or when they gain entry to the middle ear. We will also study how the gene expression of the studied vaccine targets might be influenced by the child’s immunity system.

Ravinder Kaur, Ph.D. is a Research Scientist at the Rochester General Hospital Research Institute. Kaur’s research focuses on the pathogenesis of middle ear infections and immune response of children to those infections with a goal of facilitating a vaccine to prevent hearing loss.

Sean Eric Low, Ph.D.

Sean Eric Low, Ph.D.

Rockefeller University
Ascertaining the contribution of Piezo proteins to Mechano-transduction in Zebrafish hair cells

The proteins that mediate the transformation of mechanical forces into electrical signals within the sensory cells that convey the senses of hearing and balance have yet to be identified. This lack of knowledge has undoubtedly hindered the identification of therapeutic compounds capable of alleviating the complications that arise from disorders in hearing and balance, such as deafness and vertigo. Recently, a member of the novel piezo protein family has been shown to contribute to cutaneous mechano-sensation, raising the possibility that related family members may contribute to hearing and balance. Dr. Low will utilize the simple vertebrate commonly known as zebrafish, to address this possibility.

Research area: Fundamental Auditory Research

Long term goal of research: To identify therapeutic agents that can restore normal hearing and balance in individuals who have either lost these senses, or suffer from conditions caused by abnormal activity in the sensory cells that mediate them.

Sean Low Ph.D. received a B.S. in Cellular and Molecular Biology in 2001, and a Ph.D. in Neuroscience in 2008 from the University of Michigan. Desiring to focus on sensory transduction, Low sought out a postdoctoral position in the Saint-Amant lab at the University of Montréal from 2009 – 2011, where he examined the role of a Piezo protein in cutaneous mechano-transduction. These studies evolved into an interest in mechano-transduction processes in general, and a second postdoctoral position with Dr. Hudspeth at The Rockefeller University beginning in 2011.

Ross Maddox, Ph.D.

Ross Maddox, Ph.D.

University of Washington
Relating behavior to brain in an audio-visual scene

Every day, listeners are presented with a barrage of sensory information in multiple sensory modalities. This can be overwhelming, but it also can allow for redundant information to be combined across the senses. This binding is well documented, but not well understood. Behavioral tests and brain imaging (magneto- and electroencephalography) will be used to study the brain activity associated with combing visual and auditory information. Particular interests include how congruent timing in auditory and visual stimuli allows them to be combined into a single sensory object, and what benefits this has for the listener. Using magneto- and electroencephalography will allow us to examine the brain’s response to our stimuli at a fine time-scale to determine what parts of the brain are involved in binding auditory and visual stimuli together. Listening to speech in noisy conditions can be difficult for normal-hearing listeners, but it is even harder for impaired listeners, such as hearing aid users, cochlear implant users, and those with central auditory processing disorders (CAPD). In this first phase, we will work with normal hearing listeners, to establish a baseline and understand how an individual's brain activity is related to their perception.

Research area: Central Auditory Processing Disorder; Fundamental auditory research,

Long-term goal of research: This proposal is the beginning of a line of research investigating the specific behavioral effects of audio-visual binding and its processing in the brain. Behavioral tests with brain imaging will be used to investigate the importance of combining information across the visual and auditory senses, and establish relationships in brain activity and behavior, an effort that could inspire new audio-logical therapies.

Ani Manichaikul, Ph.D.

Ani Manichaikul, Ph.D.

University of Virginia
Susceptibility to chronic otitis media: translating gene to function

Each year in the United States, over $5 billion is spent on healthcare for inflammation of the middle ear (ME) known as Otitis Media (OM) in children. Some children develop chronic middle ear infections known as chronic otitis media with effusion and/or recurrent otitis media (COME/ROM). Our goal is to find genetic factors that increase risk for COME/ROM in children. The discovery of causal variants would increase knowledge of novel genes and pathways involved in COME/ROM pathogenesis.

Research area: Otitis Media; Genetics

Long-term goal of research: To improve the clinical prevention of chronic infections; therefore decreasing pediatric antibiotic use, surgery, and deafness.

Andrew A. McCall, M.D.

Andrew A. McCall, M.D.

University of Pittsburgh
The Influence of Dynamic Limb Movement on Activity within the Vestibular Nuclei: the Role of the Cerebellum

Balance is inherently a multi-modal sense. To maintain balance in upright stance or during walking, input from several modalities – namely the vestibular system (from the inner ear), proprioceptive system (from muscles and joints), and visual system – must be interpreted by the central nervous system and synthesized to understand body position in space relative to gravity. Our goal is to investigate how vestibular and limb proprioceptive inputs interact in the central nervous system, with a particular focus on the brainstem and cerebellum as these are key sites of multisensory processing of balance input. We anticipate that the results of these studies will have important implications for the understanding of multi-sensory processing within central vestibular pathways and for the clinical treatment of humans with vestibular disorders.

Research area: Vestibular and Balance Disorders; Vestibular Physiology

Long-term goal of research: To elucidate the physiologic pathways responsible for integrating vestibular and proprioceptive information and to ultimately develop clinical strategies based upon these physiologic underpinnings to improve the health of humans with vestibular disorders.

Gowri Nayak, Ph.D.

Gowri Nayak, Ph.D.

Cincinnati Children’s Hospital Medical Center
Signaling defects due to Tricellulin deficiency

Mutations in a protein called Tricellulin lead to hereditary hearing loss in humans and degeneration of cochlear sensory cells and deafness in mice. In the inner ear, Tricellulin is found in the sensory epithelia at sites where three epithelial cells meet. The localization of Tricellulin at the junction between cells gives it the potential to respond to external cues and transmit the signals to the cell interior. The current project aims at uncovering the potential cellular signaling roles of Tricellulin by determining the gene expression changes in the inner ear of Tricellulin mutant mice compared to wild-type mice. The results of this study will not only add to the existing knowledge of the inner ear development and maintenance but also will examine the direct effects of losing a protein that helps preserve our hearing.

Research area: Fundamental Auditory Research

Long-term goal of research: To determine the role of cell junction proteins in the inner ear function and elucidate the biological processes that are affected by genetic mutations in these proteins. As tight junctions are also the focus of drug delivery studies, it is valuable to realize the cellular functions of the associated proteins so that they can be manipulated for therapeutic purposes.

Peihan Orestes, Ph.D.

Peihan Orestes, Ph.D.

University of California, Los Angeles
Cellular modifications of the vestibular labyrinth: Intrinsic mechanisms following unilateral aminoglycoside treatment for Meniere’s disease

Intra-tympanic gentamicin is a widely used treatment for unilateral Meniere’s disease, primarily to reduce the activity in the affected ear and thereby reduce the frequency and severity of vertigo attacks. Though the treatments are applied to only one ear, the adaptive effects in the untreated ear have not been widely studied. At the same time, there is evidence indicating that the vestibular receptors exhibit intrinsic capabilities for modification or adaptation to alterations from the normal operating conditions. For example, the inner ear vestibular receptors may undergo a form of “sensory learning” when exposed to changes in the ambient operating conditions associated with spaceflight. An investigation of the contralateral labyrinth following treatments comparable to that associated with intra-tympanic gentamicin may provide clues as to alterations in the conserved ear. These capabilities may be recruited through rehabilitative measures (pharmacologic, physical therapy) to accelerate recovery to normal vestibular function. We propose to study the activity of individual neurons projecting to the conserved vestibular receptors, thereby providing a direct measure of the output of these neurons and by comparisons to our large database of untreated specimens, as well as to determine whether alterations in this activity ensues following adaptation to administration of gentamicin to the contralateral ear.

Research area: Meniere's disease; Ototoxicity

Long-term goal of research: The proposed work is based on the intra-tympanic gentamicin treatment currently used for Ménière’s disease, but the implications of this study could have an even greater impact. Better understanding of the vestibular system’s ability to respond to damage reveals the possibility of retraining the non-lesioned ear, akin to physical therapy. Though most animal studies use unilateral labyrinthectomy as their disease model, such complete loss is rare in the clinical setting. The intra-tympanic gentamicin treatment for Ménière’s disease is not the same as a labyrinthectomy, as the lesions are likely to be partial. Thus, the experiment described here, a direct test of whether peripheral plasticity ensues following partial lesions, is more translationally realistic compared to the labyrinthectomy. Therefore, an investigation into the effects of a less severe lesion, such as the gentamicin regimen proposed here which preserves spontaneous neuronal activity, would be of significant translational value.

Carolyn P. Ojano-Dirain, Ph.D.

Carolyn P. Ojano-Dirain, Ph.D.

University of Florida College of Medicine
Prevention of aminoglycoside-induced hearing loss with the mitochondria-targeted antioxidant MitoQ

Aminoglycoside antibiotics, such as gentamicin, are commonly used to treat serious infections due to bacteria. However, these drugs can cause hearing loss. At present, there is no solution to prevent hearing loss caused by aminoglycoside antibiotics. This research will determine if the antioxidant MitoQ will prevent hearing loss induced by aminoglycoside antibiotics.

Research area: Hearing loss, Ototoxicity

Long-term goal of research: To develop and apply practicable intervention strategies to prevent hearing loss induced by drugs that are toxic to the inner ear.

Sarah F. Poissant, Ph.D.

Sarah F. Poissant, Ph.D.

University of Massachusetts, Amherst
The Impact of Total Communication on the Auditory Perception of Speech

For decades, most children with severe-to-profound hearing loss were educated in special schools for the deaf. In more recent years, increasing numbers of these children have been partially or fully main-streamed and educated along-side their peers with normal hearing. Much debate has ensued regarding the best language of instruction (sign-only, sign+speech, speech only) for them. It is generally thought that a symbolic, gesture-based language system, such as manually-coded English used as part of simultaneous communication methods, provides a facilitative benefit. However, there is not enough information about how children combine manual and spoken cues in this type of communication system to draw firm conclusions about optimal approaches to classroom teaching that best support aural reception of spoken language. We plan to ask and answer a very specific question: What is the direct effect of simultaneously delivered sign language on the perception of speech for children with hearing loss developing spoken language? The research approach builds from the observation that perception of speech that has been artificially degraded (e.g., to mimic a hearing loss) is strikingly improved when listeners have knowledge of the content of the message. The proposed study applies this hypothesis to children with hearing loss to determine whether signs serve in part as a prime to improve auditory perception of speech.

Research area: Auditory Development; Congenital Hearing Loss; Fundamental Auditory Research

Long-term goal of research: To assess how total communication – the combined use of manual signs, speech, and speech-reading – can most effectively be employed as a habilitation strategy to improve auditory perceptual abilities.

Lina Reiss, Ph.D.

 Lina Reiss, Ph.D.

Oregon Health & Science University
Changes in Residual Hearing in a Hearing-impaired Guinea Pig Model of Hybrid Cochlear Implants (CIs)

The goal of the current study is to understand mechanisms of hearing loss with “hybrid” or “electro-acoustic” cochlear implants (CIs), a new type of CI designed to preserve low-frequency hearing and allow combined acoustic-electric stimulation in the same ear. Hybrid CI users perform significantly better than standard CI users on musical melody recognition, voice recognition, and speech recognition in the presence of background talkers. However, approximately 10% of hybrid CI patients lose all residual hearing, and another 20% lose 20-30 dB after implantation. We hypothesize that in addition to surgical trauma, electrical stimulation through the hybrid CIs also damages cochlear cells, leading to the residual hearing loss (HL). Aim 1 is to determine the contribution of electrical stimulation to the residual HL in hybrid CI guinea pigs with noise-induced steeply-sloping high frequency hearing loss (NIHFHL). Aim 2 is to examine the effect of electrical stimulation on the cochlear pathology. The findings will guide the development of strategies to prevent hearing loss with electrical stimulation, and allow extension of the hybrid concept to all cochlear implant recipients with usable residual hearing.

Research area: Cochlear implants

Long term goal of research: To improve residual hearing preservation with “hybrid” or “electro-acoustic” cochlear implants (CIs), a new type of CI designed to preserve low-frequency hearing and allow combined acoustic-electric stimulation in the same ear.

Merri J. Rosen, Ph.D.

Merri J. Rosen, Ph.D.

Northeast Ohio Medical University
Effects of developmental conductive hearing loss on communication processing: perceptual deficits and neural correlates in an animal model

Conductive hearing loss (CHL), which reduces the sound conducted to the inner ear, is often associated with chronic ear infections (otitis media). There is growing awareness that CHL in children is a risk factor for speech and language deficits. However, children often have intermittent bouts of hearing loss and receive varying treatments. My research uses an animal model in which the duration and extent of CHL can be effectively controlled. This research will identify parameters of natural vocalizations (such as slow or fast changes in pitch or loudness) that are poorly detected after early CHL. Neural responses from the auditory cortex will be recorded while animals behaviorally distinguish vocalizations that vary in specific ways. This will reveal the specific vocalization components that are perceptually impaired by developmental hearing loss. These components should be used as targets for intervention and remediation. Creating training paradigms for children that target these parameters should improve speech perception and comprehension.

Research area: Hearing Loss; Auditory Development; Auditory Physiology; Fundamental Auditory Research

Long-term goal of research: To identify neural mechanisms that impairs auditory perception of natural sounds as a result of hearing loss. This will show how the brain distinguishes sounds from different sources in complex environments. Neurophysiological, perceptual, and computational techniques to study animal models of hearing loss were applied. This multifaceted approach allowed the identification of neural impairments in more detail than if it was obtained when studying humans, yet is directly applicable to clarify human hearing problems and establish effective treatments.

Jun Shen, Ph.D.

Jun Shen, Ph.D.

Brigham and Women’s Hospital; Harvard Medical School
An integrated paradigm for efficient hearing loss gene discovery

Knowing the genetic cause of hearing loss allows early diagnosis before the onset of noticeable symptoms. It also informs the choice of optimal management plans, and predicts risks for relatives including future babies. We aim to identify novel hearing loss genes by studying three large families with hereditary hearing loss from an isolated population. We will integrate new High- Throughput (HTP) sequencing technology with family-based analyses and prior research findings concerning hearing into the Shared Harvard Inner Ear Laboratory Database (SHIELD). This integrated approach will enable efficient identification of one or more hearing loss genes in these families. The discovery of novel genes will increase our knowledge, enable early diagnosis, and ultimately lead to improved patient care.

Research area: Fundamental auditory research

Long-term goal of research: To translate genetic research findings into accurate and sensitive clinical molecular diagnostic tests to improve care for patients.

Zhengquan Tang, Ph.D.

Zhengquan Tang, Ph.D.

Oregon Health & Science University
Hyperexcitability dependent on Neuromodulatory state in the cochlear nucleus

Tinnitus affects approximately 50 million people in the USA, and millions more worldwide. However, the mechanisms underlying tinnitus are poorly understood. The dorsal cochlear nucleus (DCN), one of the first stations of the ascending auditory pathway, receives dense serotonergic input. Recent evidence indicates that the DCN may be a site of central tinnitus, and it is possible that serotonin might play a role in the generation or modulation of central tinnitus. Moreover, serotonin reuptake inhibitors (SSRIs) typically used as antidepressants in the treatment of depression and anxiety disorders, have been explored as a treatment for tinnitus. The goal of this research is to identify the cellular targets of serotonin and SSRIs in the DCN and understand their functional roles. The ultimate goals of this research are to understand how serotonin influences the output of the DCN, and whether serotonin may have a role in tinnitus.

Research area: Tinnitus

Long-term goal of research: To understand how different neuromodulators control the neural activity in the central auditory system and their role in pathological auditory processing.

Brandon Walters, Ph.D.

Brandon Walters, Ph.D.

St. Jude Children's Research Hospital
Conditional Reprogramming of Otic Stem Cells: Development of a Novel In-Vitro Hair Cell Line

One of the major limitations in studies of hearing loss is the inability to study the phenomenon of hearing in a petri dish (in-vitro), thereby limiting the use of tools that are essential for understanding the causes of, and treatments for, hearing loss. In addition to this obvious limitation, the use of in-vitro studies is hindered primarily by technical limitations related to the low abundance of hair cells that are responsible for our sense of hearing. Researchers have attempted to overcome the issue of insufficient cell numbers by creating cell lines that mimic the properties of human hair cells, but success of these approaches have been limited. The goal of the proposed experiments is to utilize approaches from other fields to create a cell line that will allow for infinite proliferation of low abundance cells that can be turned into hair cells when needed, thus providing a limitless supply of hair cells for the study of hearing loss.

Research area: Hair Cells; Hearing Loss

Long-term goal of research: To identify drugs that can modulate the differentiation of hair cells, focusing primarily on compounds that promote hair cell formation, which we believe, will be of therapeutic benefit to people with hearing loss. To this end, we plan to utilize high throughput screening to test hundreds of thousands of compounds for potential effects on hair cell formation. We plan to combine the hair cell line that we create with various tools for tracking the developmental state of the cell to aid our evaluation of drugs that increase the number of all viable hair cells and to potentially extend our investigation to specific subtypes of hair cells that play distinct roles in hearing loss.